'There are things worse than death': can a cancer cure lead to brutal bioweapons?
John Sotos, chief medical officer at Intel, paints a dark picture of technology turned to nefarious purposes, with tailored diseases rewriting genomes on the fly
Sotos argued that the so-called cancer moonshot ‘is going to really drive new technologies to manipulate DNA, because cancer is a disease of DNA’. Photograph: Mariana Bazo/Reuters
Splitting the atom brought humanity nuclear power and nuclear weapons. A cure for cancer could have the same potential for pushing humanity to new highs – or terrifying lows. According to John Sotos, the chief medical officer of Intel, the same technology that might someday allow us to defeat illness for good also poses the prospect of tailored diseases attacking individuals, families or even whole races and rewriting their genomes on the fly.
Sotos made his remarks at the DEF CON hacking conference in Las Vegas, a place where hackers gather to share tips and tricks for how to break into almost anything with a circuit board. But during a weekend when attacks were demonstrated against wind farms, voting machines and almost every major smartphone in one fell swoop, Sotos’ nightmare scenario still stood out as plausible and terrifying.
The Intel executive, best known for his work over six years as a consultant on the TV show House, argued that the eventual success of Joe Biden’s “cancer moonshot”, a US government-funded programme that’s aimed at finding vaccine-based treatments for cancer, would necessarily open up the potential for bioweapons of unimaginable destructive potential.
“The reason you haven’t heard much about bioweapons is that they’ve been held back by a pretty severe limitation, which is the potential for blowback,” Sotos said. It is hard for any attacker to use weaponised diseases because they spread beyond their initial distribution range: destroy your neighbouring nation and you destroy your own as well.
But, Sotos argued, “the cancer moonshot is going to really drive new technologies to manipulate DNA because cancer is a disease of DNA. [And] the same exquisite targeting that allows it to attack only your cancer cells also overcomes the blowback potential for bioweapons.”
In other words: if you can build a treatment that can be restricted to attack only cells with the genetic flag for cancer, you can build a bioweapon that can be restricted to attack only individuals with a particular genetic flag revealing their ancestry, gender or family.
The technology doesn’t exist yet, although a number of medical techniques such as Crispr – a genome-editing tool – show the potential of such biohacking. But Sotos argued that its eventual refinement “is inevitable. There are going to be thousands of people doing this sort of genetic manipulation down in the basements of hospitals.”
But a plausible attack doesn’t just mean mass fatalities. “There’s some stuff worse than dying,” Sotos said. “And I call that hell.”
What, for example, if groups spread their agenda in a very direct way, by literally rewriting DNA to make it impossible to live a life against their credo? Suppose militant vegans wanted to end meat eating: there’s a gene for that. Or imagine if radical misogynists wanted to force the veiling of all women: there’s a gene for sunlight intolerance, and the genetic functions of gender are already well-known.
Or, he suggested, attacks could be done on an individual level: targeting public figures by stealing their genetic code, or targeting their whole family by sequencing the genes of someone who’s closely related. And the attacks could be subtler than what’s expected: Sotos cited genes for intractable diarrhea, massive weight gain, total baldness and “an intense fishy body odour”.
But Sotos was suggesting a worst-case scenario, and other scientists criticised him for distracting from real problems in the present. “Creating noise & sounding alarms this way isn’t helpful to saving lives,” tweeted DJ Patil, the former chief data scientist of the US Office of Science and Technology Policy. “The risk is really small. It’s really hard to mass produce these. The real risk we should be focusing on is drug resistant TB and pandemics.”