Household electromagnetic radiation doesn't make you ill or give you cancer. Here's why
People suffering from electromagnetic hypersensitivity are ill. But when you look at the evidence, it’s not electromagnetic radiation that’s the problem

Despite the very real discomfort experienced by EHS sufferers, there is no evidence to support the idea that electromagnetic radiation is responsible. Photograph: Tim Robberts/Getty Images
David Robert Grimes-Wednesday 17 February 2016
But while EMR is an inescapable part of our universe, there are many who worry about potential detrimental effects. In particular, the propagation of personal communication devices has been a source of concern to many. There is a vocal cohort who claim to suffer from a condition called electromagnetic hypersensitivity (EHS or ES), whose symptoms include everything from fatigue and sleep disturbance to generic pains and skin conditions. More still fixate on idea that our increasingly wireless offices and homes might amplify our cancer risks. Such narratives are common and understandably disturbing. But should we be concerned?
To answer that question, it’s important to clarify a few potential sources of confusion. Radiation itself is a deeply misunderstood term, frequently conjuring up worrying associations with radioactivity in the public conscious. But radiation simply refers to transmission of energy through a medium. In the context of EMR this means radiant energy released by an electromagnetic process. This energy moves at the speed of light, characterised by its wavelength and frequency. The electromagnetic spectrum is the range of all possible frequencies of EMR, where energy is proportional to frequency. While we only see a tiny portion of the spectrum in the form of visible light, we can think of it as a range of light particles (photons) with different energies. Some of these even have sufficient energy to eject electrons from an atom or smash apart chemical bonds, which renders them capable of causing DNA damage. This is known as ionizing radiation, and this ionizing potential is exploited when X-rays are harnessed to kill tumour cells in radiotherapy.